A Model for the Flexibility of the Distal Histidine in Dehaloperoxidase-Hemoglobin A Based on X-ray Crystal Structures of the Carbon Monoxide Adduct
نویسندگان
چکیده
Dehaloperoxidase hemoglobin A (DHP A) is a multifunctional hemoglobin that appears to have evolved oxidative pathways for the degradation of xenobiotics as a protective function that complements the oxygen transport function. DHP A possesses at least two internal binding sites, one for substrates and one for inhibitors, which include various halogenated phenols and indoles. Herein, we report the X-ray crystallographic structure of the carbonmonoxy complex (DHPCO). Unlike other DHP structures with 6-coordinated heme, the conformation of the distal histidine (H55) in DHPCO is primarily external or solvent exposed, despite the fact that the heme Fe is 6-coordinated. As observed generally in globins, DHP exhibits two distal histidine conformations (one internal and one external). In previous structural studies, we have shown that the distribution of H55 conformations is weighted strongly toward the external position when the DHP heme Fe is 5-coordinated. The large population of the external conformation of the distal histidine observed in DHPCO crystals at pH 6.0 indicates that some structural factor in DHP must account for the difference from other globins, which exhibit a significant external conformation only when pH < 4.5. While the original hypothesis suggested that interaction with a heme-Fe-bound ligand was the determinant of H55 conformation, the current study forces a refinement of that hypothesis. The external or open conformation of H55 is observed to have interactions with two propionate groups in heme, at distances of 3.82 and 2.73 Å, respectively. A relatively weak hydrogen bonding interaction between H55 and CO, combined with strong interactions with heme propionate (position 6), is hypothesized to strengthen the external conformation of H55. Density function theory (DFT) calculations were conducted to test whether there is a weaker hydrogen bond interaction between H55 and heme bonded CO or O2. Molecular dynamics simulations were conducted to examine how the tautomeric forms of H55 affect the dynamic motions of the distal histidine that govern the switching between open and closed conformations. The calculations support the modified hypothesis suggesting a competition between the strength of interactions with heme ligand and the heme propionates as the factors that determine the conformation of the distal histidine.
منابع مشابه
Molecular dynamics simulation of the neuroglobin crystal: comparison with the simulation in solution.
Neuroglobin (Ngb) is a monomeric protein that, despite the small sequence similarity with other globins, displays the typical globin fold. In the absence of exogenous ligands, the ferric and the ferrous forms of Ngb are both hexacoordinated to the distal and proximal histidines. In the ferrous form, oxygen, nitric oxide or carbon monoxide can displace the distal histidine, yielding a reversible...
متن کاملNew Sequential Model for Human Hemoglobin: Alpha Subunit as Cooperativity Inducer
Hemoglobin is a tetrameric oxygen transport protein in animal bodies. However, there is a paucity of information regarding differences between alpha and beta subunits of hemoglobin in terms of oxygen affinity. The sequential model of Koshland, Nemthy and Filmer (KNF model) has attributed similar affinities to both alpha and beta subunits. The main purpose of the present study is to construct a ...
متن کاملSpectroscopic study of substrate binding to the carbonmonoxy form of dehaloperoxidase from Amphitrite ornata.
Dehaloperoxidase (DHP) is a globular heme enzyme found in the marine worm Amphitrite ornata that can catalyze the dehalogenation of halophenols to the corresponding quinones by using hydrogen peroxide as a cosubstrate. Its three-dimensional fold is surprisingly similar to that of the oxygen storage protein myoglobin (Mb). A key structural feature common to both DHP and Mb is the existence of mu...
متن کاملSecondary Structure Effects on the Acidity of Histidine and Lysine-Based Peptides Model; A Theoretical Study
In this study, the effect of the secondary structure of the protein on the acid strength of three structures of random (R), alpha helix (α) and beta sheet (b) were investigated theoretically. These structures are related to the cationic amino acids of histidine and lysine in the polypeptide chain of eight-glycine residue. Computational methods at the HF, B3LYP, X3LYP and M05-2X levels in t...
متن کاملKinetics of oxygen and carbon monoxide binding to liver fluke (Dicrocoelium dendriticum) hemoglobin. An extreme case?
The kinetics of oxygen and carbon monoxide binding to the monomeric liver fluke (Dicrocoelium dendriticum) hemoglobin have been studied. The ligand association rates are approximately 1 X 10(8) and approximately 3 X 10(8) M-1 s-1, respectively, for CO and O2 and show no pH dependence. On the contrary the ligand dissociation rates decrease by lowering the pH below 7, the pK of the transition bei...
متن کامل